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ABSTRACT 

For a plasma with f i n i t e  cross-section of the  s o r t  which occurs typ ica l ly  

i n  laboratory plasma waves experiments, i n  a constant magnetic field, the 

Landau damping (or  growth) is obtained by a var ia t iona l  procedure i n  terms 

of the plasma velocity dis t r ibut ion function and poten t ia l  and density pro- 

files. 

lower branches of the dispersion curve f o r  longitudinal e lectron plasma waves 

i n  the  case of a Maxwellian velocity d is t r ibu t ion  i n  s lab and cy l indr ica l  

geometries. 

low density e lectron beam with rad ia l ly  dependent energy superposed on a Max- 

wellian. 

The r e s u l t  is applied to the damping associated with the  upper and 

Application i s  a l so  made t o  the growth rates resu l t ing  from a 

e 
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I INTRODUCTION 

c- 

Theoretical investigations of the dispersion relations and damping of 

longitudinal electron plasma waves' have been carried out in considerable 

detail for the case of homogeneous finite-temperature collisionless plasma. 

However, it is of interest to extend these considerations to inhomogeneous 

systems as well, since laboratory experiments2 always employ bounded plasmas. 

A nuniber of other papers have treated this subject. 

3 
Trivelpiece and 

Gould 

conducting surface in the quasi-static (low p) approximation. 

conditiolslead to a dispersion relation with two branches, a lowerone corres- 

ponding to Langmir oscillation, and an upper one, the "backward wave", near 

the cyclotron frequency. 

in the case of strong magnetic field (n >> w ), using the finite-temperature 
e Pe 

dielectric tensor and treating a smoothly varying cross-sectional density pro- 

file instead of a step function. 

duce Landau damping and to permitw to become greater than CD 

just as in the homogeneous case. 

considered a cylindrical cold plasma inside a concentric cylindrical 

The boundary 

4 Gould generalized this result for the lower branch 

The effect of finite temperature is to intro- 

II ' for large k 
Pe 

Lichtenberg and Jayson5 consider one - and two-stream Maxwellian plasmas, 
keeping lowest order finite temperature terms in the dielectric tensor. 

a cylindrical plasma with constant density bounded at r = R (step-function 

dependence), they solve the dispersion relation for the decay (growth) rate 

in terms of frequency, wave length and plasma density, temperature and radius. 

The contribution t o  this growth rate comes from resonance between electrons 

and three plasma modes: the Langmuir oscillations, the n = 1 cyclotron 

mode (backward wclve) and the n = -1 mode. 

For 
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I 
.) I n  t h i s  paper an approach similar 

In  Section I1 a variational employed. 

3 

t o  t h a t  of Lichtenberg and Jayson is  

technique is used t o  calculate the 

decay r a t e  7 as a small perturbation correction t o  the wave frequency. 

a Maxwellian electron d is t r ibu t ion  is  assumed, but the density and e l e c t r i c  

po ten t ia l  are  a rb i t ra ry  slowly varying functions of position, regarded as 

being obtained from measurements. They enter  i n  the f inal  expression f o r  

7 o n l y  i n  two rather  insensi t ive averages. 

both upper and lower branches. 

2-dimensional ( s lab)  and cyl indrical  geometry are derived, fo r  strong 

(ne > o 

Here 

The r e s u l t  describes damping i n  

Formulas f o r  the growth rate i n  both 

) and weak (ne < o 
Pe Pe 

) magnetic field. 

I n  Section 111, t h i s  calculation is modified t o  include the e f f ec t  of 

a low density electron beam. The beam is injected ax ia l ly  wi th  a very narrow 

veloci ty  spread about a mean velocity which i s  a function of position. This 

injected beam i s  shown t o  lead t o  an i n s t a b i l i t y  of the 

which may be made quite gentle,  so as t o  be describable 

theory . 6 

lower branch mode 

by the quasi-linear 



11. DECAY RATE FOR MAXWELLIAN PLASMA 

We w i l l  consider a plasma which i s  uniform i n  the  direct ion along the 

uniform constant magnetic f i e l d  ( t h e  z-direction) and inhomogeneous i n  the  

transverse direction. 

so  t h a t  t he  perturbed e l e c t r i c  f i e l d  i s  derivable from a potent ia l .  

the  l inear ized Vlasov equation we can obtain Poisson's equation i n  the form 

We r e s t r i c t  ourselves t o  low p (quas i - s ta t ic )  systems, 

From 

W e  discuss systems with two-dimensional geometry first, then out l ine the  

analogous treatment of cyl indrical  systems. 

For two-dimensional geometry we wri te  the poten t ia l  as 

q(x) varies  smoothly over the cross section of the plasma, so w e  can speak 

of an e f fec t ive  transverse wave number k - 1/R, where R i s  the  plasma 
I 

width o r  radius. We assume Maxwellian velocity d is t r ibu t ions  with ion tem- 

peratures not subs tan t ia l ly  larger than electron temperatures, so only the 

electron contribution t o  c need be retained. Then f o r  long wavelengths 
% 

(0 - >> v k T' 
II 

and small electron Larmor radius 

(3)  

b 

'e - << 1, R ( 4 )  

7 c is given by - h 

4 



e = xxe Ah + 4 k C  
I II E 

where 

and 

5 

( 5 )  

2 
n(x); tl is the  electron e Here UI 

cyclotron frequency; vT = - m '  

is  the  electron plasma frequency , w p = y  
P 

2 2T 

k2T 
2 

'em 

z = A << 1, by (4); 

8 Z i s  the  plasma dispersion function of Fr ied and Conte , defined by 

C 

asymptotically f o r  la rge  argument; and I 

argument of n order 

is t h e  Bessel function of imaginary 
n 

t h  
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6 

f o r  small z. 

I n  Eq. ( 5 )  diagonal terms and corrections t o  e and e a r i s ing  from the  
II I 

variat ion of the density n have been dropped by Eq. (3) and Eq. (4) ;  

inclusion of the  la t ter  can lead in  some cases t o  the  existence of unstable 

d r i f t  modes, the universal  i n s t ab i l i t y .  

Next we expand Eq. (6) and Eq. (7) fo r  la rge  xn and s m a l l  z, using the 

asymptotic fo rn  Eq. (8). 

and r e t a in  only terms t o  f irst  order i n  7/w0 and exp(-x:), the  r e s u l t  i s  

If i n  addition we write LD = + i y ,  y / a 0  << 1 3  01)0 

 in^ Eq. (lo), contributions from higher harmonics ( In I > 1) a r e  exponentially 

small unless Me =a; then they are s m a l l  l i k e  some power of Z. 

magnetic f i e l d  is very weak, it i s  usually possible t o  neglect the n = -1 

term as well, and t h i s  w i l l  be done i n  what follows. 

Unless the 

Subst i tut ion of Eq. (5) i n  Eq. (1) yie lds  

3 



For given boundary conditions and density profile n(x), this equation is 

an eigenvalue problem which in principle yields the analytic form of $ and 

a dispersion relation for complexu as a function of k . In general it is 
not possible to carry out this calculation exactly, even in the limit T e 0 

where w is real and the modes propagate undamped. 

11 

Nevertheless it is possible to utilize Eq. (11) in a variational 

approach. To do this, we rewrite it in the form 

L* = (Lo + iL1)* = 0 

Here L and L are the real and imaginary parts of L: 0 1 

S 

0 

Now consider the equation 



. 
I 

d. 

8 

Multiply Eq. (12) by which describes undamped waves propagating at T = 0. 

$,(x), Eq. (13) by $ (x), and integrate over 
* * x from -0 to +@: 

J J 
-m -OD 

since Lo is self-adjoint. 

approximating q0 w $ and integrating by parts yields 

Finally, subtracting Eq. (15) from Eq. (14), 

This may be solved for y as 



9 I -  

I 
c 

where 

For an approximately homogeneous plasma i n  which ne >> CD the  dis- 
P' 

pers ion curve looks as shown in  Fig. 1. 

t h e  equation f o r  y reduces t o  

On the luwer branch, wo << Qe, and 

4 (2) F + G  

The ca lcu la t iorsof  Trivelpiece and Gould 3 and of Gould 4 show t h a t  f o r  small 

k 

t o  t h e  familiar expression f o r  t h e  Landau damping of a homogeneous plasma 

i n  t h i s  l imi t ,  as it also does i n  t h e  l i m i t  R 

adoe goes l i k e  k R .  Since F/G - (k l lR)-2 ,  we see t h a t  Eq. (20) reduces 
II II 

On the  upper branch, 

COO ne, and 



I -  10 

e 

I 
w 
0 

\ 2  2 1/2 ( a  e +up) 

Fig. 1 -- Dispersion curve for homogeneous plasma in strong field. 
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I -  

L 

~ 

. 

cu' 
F + G  

2 2 2  
(Luo-ne 1 

which is valid provided cu -SI is not small compared with k v I 0 el I1 T' 
If cu >> SIe through the bulk of the plasma, there are  still two 

, cu0 s Qe, and on the upper one, cu >> SIe. branches; on the lower one 

Eq. (17) does not simplify. 

P 
Now 0 

For the case of cylindrical symmetry we assume the potential is azi- 

muthally symmetric: 

and Eq. (11) becomes 

--(re I d  3) - k s * = O .  2 
II II rdr ~ d r  

Here e and e 

sion c: is diagonal and c w c c in the approximations Eq. (3) and 

are again given by Eq, (6) and Eq. ( 7 ) ,  since in three dimen- 
II I 

z.% YY = I  

Eq* (4). 
The variational calculation goes through unchanged, except that now 
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I . .  
The result is identical with Eq. (17), where now we must replace Eq. (18) 

and Eq. (19)  by 

OD 

f 

The formula for 7 simplifies as before when we specialize considerations. 

This case may be generalized without difficulty to include azimuthal 

dependence in +. 

t 



111. GROWTH RATE FROM BEAM INJECTION 

We imagine that a low temperature beam of electrons moving parallel to 
4 

B is superposed on the MaxwellIan which was considered in Section 11. 

ignore them1 motion within the beam altogether end assume it is cylindrically 

symmetric, the part of the electron distribution function arising from the 

beam has the form 

If we 

where a(.) + vo is the velocity with which particles at a distance r from 
the axis of the system are moving; we assume a(0) = 0. 

will increase with r, since we may imagine the beam to have arisen as a result 

of shooting electrons from an electron gun into a potential profile something 

like that shown in Fig. 2. 

In general, a ( r )  

- V  

Fig. 2 -- General form of observed potential in plasma confined by 
magnetic field. 

. 
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We are primarily interested in simple modes which propagate through the 

plasma as a whole, that is, in which all the electrons in a cross-sectional 

slice participate. This being the case, we may expect that for a beam dis- 

tribution function which varies radially as d.oes (26) ,  the wave will see an effec- 

tive distribution averagea over r. In the case of interest, the local beam 

density is much smaller than the density of the background Maxwellian, 

D(r) << n(r) 

To include the effects of the beam, we retrace the argument leading to 

Eq. (17). If we assume LU << 0, so that only the lower branch contributes 0 

to y ,  the equation becomes 

2 

where 

0 

Equation (as) reduces to the usual expression for linear Landau damping, 
However, if we write (28) for a general distribution func- since G I  cancels. 

tion, it takes the form 



where e l l  is  the  usual d ie lec t r ic  function 

When w e  write f = f +f m beam’ 

0 (decay) rate i s , for  7 << o 

the contribution of the beam t o  the growth 

QD 

where 

g = D ( r )  8 ( v  - vo - a ( r ) ) .  

1 
G b’ I n  calculat ing 7 , w e  can ignore f 

than the background density. 

since the  beam density is  much smaller 

Equation (9) may be rewrit ten i n  order t o  invest igate  par t icu lar  

choices of a( r )  and D( r ) .  

ing, so  t h a t  

To do t h i s  w e  assume tha t  a( r )  i s  monctone increas-, 

SI. - vo - a w ) =  ‘ q j  1 S(r-r0L 

where o(ro) = v-v and a’ = - . Then in tegra t ing  by p a r t s  w e  have 
0 dr  
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2 
=&) 1 n  b 

We can write 

so 

= '0 
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This shows that the contribution to y for a particular phase velocity u0/k 

comes from particles at a distance ro sufficient to make 

0 u) 

vo + a(ro) = . 
For udk < vo, there are no such particles, since a(r) > 0; so if a ,  y l > O  

as r + 0, there is a jump in the effective velocity distribution, yielding 

a 6 function dependence in y .  This 6 function results from our assumption 

that the beam had zero temperature; in fact, it is smoothed out for finite 

beam temperatures. 

Following Fig. 2, let us examine some plausible choices for a( r). We 
2 
P 

assume D(r) = D, a constant, and assume that (o and 1 ) I 2  are roughly constant 
out to some value r = R. 

The first choice is 

( 3 3 )  A = constant. 2 a(r) = Ar , 

Then al(r) = 2Ar, and ro = 

effective distribution, since 

. We see that there is a jump in the 

Formula (2) yields 

0 
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The peak at ro = R ia of course rounded if we retain a realistic radial 
2 2  
P dependence for u) It . 

For the second choice ofa(r), we argue as follows: an electron will 

have kinetic energy 

where E 

Fig. 2. 

is the "muzzle" energy of the electron gun and V is shown in 

If V has roughly parabolic dependence or r, then 
0 

M + v r  

2 2 2 lI2 a(r) = (vo + 17 r ) - vo; 

Now formula (37 )tells us that f o r  0 < ro < R ,  

as shown in Fig. 3. 



(GO) 

I 

h 

I I 
I r 

vo 

W O  4 
k 

Fig. 3 -- Growth rate resul t ing from beam with dependence 
- vo. 2 2 2 4  a ( r )  = vo + v r ) 

v + a (  0 

It is not necessary t o  t r e a t  f i n i t e  beam temperature to  remove the sharp 

peak in y .  If a template i s  

placed before the  stream of electrons from the  electron gun, it can screen 

some out, so t h a t  D ( r )  may vanish a t  r = 0. For example, l e t  the template 

be i n  the form of a screen whose edges have roughly the shape shown i n  Fig.  4, 

sa t i s fy ing  the equation r 

Thus far we have taken D ( r )  t o  be a constant. 

2 2  = a sin8. 

Y 

2 2  
Fig. 4 -- Outline of a template with shape described by r = a si&. 
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2 -1 r s in  

e 

J 

2 

2 

z a r 

a 
d 0 -  4- f o r  r small. Then D ( r )  - 4 

I 

2 2  
P 

Now, taking u) l J l l  gradually decreasing as r increases ( ins tead  of a 

sudden drop a t  r = R ) ,  we have f o r  y a curve of t h e  form shown i n  Fig. 5. 

Fig.  5 -- 7/cuo modified by template and r ad ia l  dependence of plasma. 

Note t h a t  the area under the  curve sums t o  zero. This follows from 

the next t o  last l i n e  of Eq. (P), which expresses y as a t o t a l  der ivat ive 

with respect t o  v of a quantity which vanishes as v - v and v +  OD. 

We conclude t h a t  it i s  possible t o  produce the "gentle bump" i n s t a b i l i t y  
0 

discussed i n  l i n e a r  and quasilinear6 analyses of i n f i n i t e  plasmas i n  a 

bounded laboratory plasma by proper addustment of the indected electron beam. 
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